
Introduction to Approximation Algorithms1

• Welcome to a course on approximation algorithms. These are “efficient” algorithms which return a
solution “close” to the desired solution, where close is deliberately left vague at this point. Why should
one care? For many reasons. Most importantly, there are many problems for which finding the desired
solution may be too hard. For instance, if we take an NP-hard problem2 such as finding what is the
longest path from a to b in a graph, then no one knows (and many don’t expect) an efficient algorithm
which runs in time at most some polynomial of the number of vertices and returns the correct solution
on every graph. An approximate solution could be a path which may not be the longest but is at least
half as long.

Approximation also makes sense even when there are efficient algorithms known for a problem, but
they are not efficient enough. For instance, a classic undergraduate algorithms problem is the edit
distance problem : given two strings find the smallest number of inserts/deletes/swaps which takes
the first string to the second. There is a dynamic programming algorithm whose running time is pro-
portional to the product of the length of the two strings. But if the strings are, say, genome sequences,
then each could have billions of characters, and it is infeasible to run such an algorithm. Perhaps one
can approximate this number much faster? Perhaps even without looking at whole of these strings.

In this course, most of the effort will be spent on designing approximation algorithms for NP-hard
problems. A formal definition follows in the next bullet point. The main objective, however, is to
explain an array of techniques that have been developed in the past four decades, and these techniques
also find use in other notions of approximation.

• A bit of formality. Formally, an optimization problem Π consists of instances I and feasible solutions,
S, to these instances. Each solution S ∈ S is associated a cost c(S). To work with an example, the
optimization problem minimum spanning tree (MST) has instances described by undirected graphs
and costs on the edges. Solutions are the spanning trees of the graph, that is acyclic subgraphs con-
taining all the vertices, and the cost of each solution is the sum of costs of the edges in the tree. An
optimization problem Π is called a minimization problem if one wishes to find minimum cost solu-
tions for every instance; it is called a maximization problem, if one wishes to find maximum cost (in
which case cost is often called profit) solution.

An algorithmA for an optimization problem Π, maps every instance I to a feasible solution S ∈ S. So
an MST algorithm takes an undirected graphs with edge costs and returns a spanning tree. Algorithm
A is called the optimal algorithm for a minimization (respectively, maximization) problem Π if for
each instance I, the algorithm returns the solution S ∈ S of the minimum (respectively, maximum)
cost. As mentioned above, for many optimization problems which are NP-hard, we do not expect to
find optimal algorithms. This motivates the following definition.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 4th Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2We assume the reader has familiarity with a basic undergraduate algorithms course, and also knows a bit of computational
complexity. In particular, the reader understands what an NP-hard problem is.

1

Definition 1. An algorithm A for a minimization problem Π is an α-factor approximation algo-
rithm for Π, for some α ≥ 1, if for every instance I, the solution SA returned by A satisfies

c(SA) ≤ α ·min
S∈S

c(S)

An algorithmA for a maximization problem Π is an α-factor approximation algorithm for Π, for
some α ≤ 1, if for every instance I, the solution SA returned by A satisfies

c(SA) ≥ α ·max
S∈S

c(S)

It should be clear that for any problem Π, we would like to design polynomial time algorithms with α
as close to 1 as possible. For NP-hard problems we don’t expect to reach α = 1. How close can we
get?

• The Steiner Tree Problem. Let us begin with a simple cousin of the minimum spanning tree algorithm
which is already NP-hard. As in the minimum spanning tree problem, the input is an undirected graph
G = (V,E) with costs on edges. Additionally, one is given a subset R ⊆ V of required vertices.
The objective is to find the minimum cost subtree of G which contains all the vertices of R. It may or
may not contain all the vertices in V \ R, the so-called Steiner vertices. Such trees are called Steiner
trees. For example, in Figure 1 the right-most tree is a spanning tree which is naturally a Steiner tree
as well, while the middle tree is a Steiner tree since it doesn’t contain the bottom-right Steiner vertex.

3

1

3 3

4

1

1

1.5 1
3

1

3

3

1

1

1

1

3
1

1

Figure 1: A graph and two Steiner trees. The dark, filled circles are required vertices.

It is perhaps surprising that although the minimum spanning tree has a simple exact algorithm, the
Steiner tree problem is NP-hard. One therefore wishes to find approximation algorithms. An α-
approximation algorithm would take any graph G and return a Steiner tree T with the guarantee that
cost(T) ≤ α · opt(G) where opt(G) is the cost of the minimum cost Steiner tree. Note that the
algorithm would have no idea what opt(G) is, indeed even finding that value is NP-hard, and yet one
should be able to argue that cost(T) ≤ α · opt(G).

• A simple 2-approximation algorithm. Is there an algorithm that comes to mind? Here is one : since
finding MST is easy, let’s start by finding T ′ which is an MST of G. Starting with this tree T ′, while
there is a leaf which is a Steiner vertex, keep deleting it till we end up with a Steiner tree T all of
whose leaves are vertices in R. In the example of Figure 1, the algorithm would return the tree to the
right. And in that example, we see that cost(T) ≤ 10

9 ·opt(G), where the middle tree is the cheapest

2

Steiner tree (figured by brute-force check). Does this mean the algorithm is a 10
9 -approximation? No!

Because the approximation algorithm needs to return a tree within α · opt(G) for every graph G.
Indeed, the example shows that the factor can be no better than 10

9 , and in fact the factor is pretty
bad.

Exercise: K For any constant α, describe a graph G = (R ⊆ V,E) such that if T is the tree
returned by the above “mst-and-prune” algorithm, then cost(T) > αopt(G).

However, there is a simple 2-approximation algorithm using minimum spanning trees, except that it
is run on a different graph. Given G = (V,E), R ⊆ V , and c(e) on edges, define a complete graph
H = (R,F) with costs w(u, v) for all pairs u, v ∈ R×R, where

w(u, v) = shortest cost path from u to v in G with costs c

See Figure 2’s first arrow to get the metric completion for the graph in Figure 1. Note that the metric
completion can be obtained efficiently using, say, an all pairs shortest path algorithm.

3

1

3 3

4

1

1

1.5 1

1

3 3

1

424

4

44.5

4241

Figure 2: Illustration of metric completion and the algorithm.

The algorithm is as follows : compute the MST in H with weights w. Let this tree be T ′ ⊆ H . Start
with an initial graph T = (V, ∅). For every edge e = (u, v) ∈ T ′ of weight w(e), add the edges of
the minimum cost path from u to v of cost w(u, v) to T . Note that we may be taking multiple copies
of the same edge. After processing all edges in T ′, we end up with a multi-graph T such that (a) T
contains all the vertices in R, and (b) cost(T) = w(T ′) = mst(H). Now delete edges arbitrarily
from T to make it a simple tree. This includes parallel copies and edges that form cycles, if any. In
the example in Figure 2, the algorithm, in fac, recovers the optimum solution.

Exercise: K As the illustration shows, T can contain parallel edges. Can it contain cycles of
length 3 or more? Why or why not?

3

1: procedure MST-STEINER(G = (V,E), R ⊆ V , c(e) on edges):
2: Obtain (H,w)← (G, c) via metric completion.
3: T ′ ← mst(H,w).
4: For every edge (u, v) ∈ T ′, add path to T .
5: Prune T till it becomes a tree.
6: return T .

• Analysis. The above algorithm in fact is “not-too-bad” on any graph.

Theorem 1. MST-STEINER is a 2-approximation algorithm. That is, for any (G, c) with non-
negative costs on edges, the algorithm returns a Steiner tree T with cost(T) ≤ 2opt(G).

Proof. We already know that cost(T) ≤ mst(H,w). To prove the theorem, it suffices to argue that
mst(H,w) ≤ 2opt(G). To do this, consider the optimal Steiner tree T ∗. The idea is to describe a
tree W in H whose weight is at most 2cost(T ∗).

Duplicate every edge in T ∗ to get a multi-subgraph T ∗∗ of G. Note that cost(T ∗∗), the cost of all the
edges, is precisely 2opt(G). Upon duplicating, we get that the degree of any vertex v ∈ T ∗∗ is even.
We are now going to use another graph theoretic fact. In any multi-graph, and in particular in T ∗∗,
where all vertices are even, there exists a walk starting at any vertex u and ending at the same vertex
u which traverses every edge exactly once. Such a walk is called the Eulerian walk or Eulerian tour.
Let τ be this tour.

Now we start τ at a required vertex u. Initialize W ← ∅. Any time we visit another required vertex
v ∈ R in τ , we add an edge (u, v) toW with cost w(u, v). Note that this weight w(u, v) is, by design,
at most the cost of the edges in traversed in τ . Upon continuing thus throughout τ , we end with a
subgraph W of H which is (a) spanning since all vertices of R are visited by τ since R ⊆ T ∗∗, and
(b) the total weight of W is at most cost(τ) = cost(T ∗∗) = 2opt(G). Since the MST of H wrt w
is only less than the weight of W , we get mst(H,w) ≤ 2opt(G). QED.

Exercise: K For any constant ε > 0, find a graph G = (V,E) with costs c, such that MST-
STEINER returns a tree T with cost(T) > (2 − ε)opt(G). So, the approximation factor of the
algorithm is no better than 2.

Notes

The Steiner tree problem has its roots in the following plane geometry problem : given three points A,B,C
on the place, which point O minimizes |OA| + |OB| + |OC|. This point is called the Fermat-Torricelli
point. The 2-approximation algorithm described above is one of the earliest approximation algorithms
known, and can be found in the paper [2] by Choukhmane. The first improvement of 11

6 is in the paper [3]
by Zelikovsky. The current best approximation faction is ln 4 ≈ 1.39 which was obtained in the paper [1]
by Byrka, Grandoni, Rothvoss, and Sanita.

4

https://en.wikipedia.org/wiki/Fermat_point
https://en.wikipedia.org/wiki/Fermat_point

References

[1] J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanità. Steiner tree approximation via iterative randomized
rounding. Journal of the ACM, 60(1):1–33, 2013.

[2] C. El-Arbi. Une heuristique pour le problème de l’arbre de Steiner. RAIRO-Operations Research,
12(2):207–212, 1978.

[3] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica,
9:463–470, 1993.

5

